SEM \& Lavaan

Bang Quan Zheng
STAT 242
Multivariate Analysis with Latent Variables

October 11, 2019

Toy Data: Holzinger and Swineford (1939)

The classic Holzinger and Swineford (1939) dataset consists of mental ability test scores of 7th- and 8th-grade children. There are 9 variables, which are the scores of 9 tests. We use this widely used sample data to demonstrate the latent variable analysis.

Example: Path Diagram (CFA)

UCLA

The Measurement Model

- a visual factor measured by 3 variables: $\mathrm{x} 1, \mathrm{x} 2$, and x 3
- a textual factor measured by 3 variables: $x 4$, $x 5$, and $x 6$
- a speed factor measured by 3 variables: $\mathrm{x} 7, \mathrm{x} 8$, and x 9

The Measurement Model

Latent variable $=$ indicator $1+$ indicator $2+$ indicator3
visual $=x 1+x 2+x 3$
textual $=\mathrm{x} 4+\mathrm{x} 5+\mathrm{x} 6$
speed $=x 7+x 8+x 9$

Identification in SEM?

According to Bollen (1989: 88), "Investigation of identification begin with one or more equations relating known and unknown parameters. By "known" parameters, I do not mean that the exact values of the parameters are known. Rather, I mean parameters that are known to be identified." "The 'unknown' parameters are the parameters whose identification status is not known."
According to EQS manual, "If the parameters were subject to any arbitrariness, it would be difficult to speak of them as true parameters that are to be estimated, since a wondering target would be involved." (p. 25)

Identification in SEM?

- 3 latent factors
- 3 indicators per factor ($3 \times 3=9$ indicators)
- Data point $=\operatorname{Px}(\mathrm{P}+1) / 2$
- $(9 x 10) / 2=45$ data points
- 3 factor covariances, 9 factor loadings, 9 variances, the total is 21 free parameters
- Degrees of Freedom= (number of data point - number of parameter)
- $(45-21)=24$ degrees of freedom

Why 45 data points?

```
$ cov
    x1 x2 x3 x4 x5 x6 x7 x8 x8 x9
x1 1.358
x2 0.448 1.382
x3 0.590 0.327 1.275
x4 0.408 0.226 0.298 1.351
x5 0.454 0.252 0.331 1.090 1.660
x6 0.378 0.209 0.276 0.907 1.010 1.196
x7 0.262 0.145 0.191 0.173 0.193 0.161 1.183
x8 0.309 0.171 0.226 0.205 0.228 0.190 0.453 1.022
x9 0.284 0.157 0.207 0.188 0.209 0.174 0.415 0.490 1.015
```

$$
\frac{P x(P+1)}{2}=\frac{9(9+1)}{2}=45
$$

Why 45 data points?

$$
\frac{P x(P+1)}{2}=\frac{9(9+1)}{2}=45
$$

Why 21 parameters?

* denotes that the parameter is free to be estimated

1 denotes the parameter is fixed
Therefore, we have total 21 free parameters to be estimated

The Model Syntax

formula type	operator	mnemonic
latent variable definition	$=\sim$	is measured by
regression	\sim	is regressed on
(residual) (co)variance	$\sim \sim$	is correlated with
intercept	~ 1	intercept

Running the model in R

install.packages("lavaan", dependencies=TRUE)
library(lavaan)
data(HolzingerSwineford1939)
HS.model <- ?
visual $=\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3$
textual $=x 4+x 4+x 5$
speed $=x 7+x 8+x 90$
fit<-cfa(HS.model, data=HolzingerSwineford193)
summary(fit)
Note that the functions of $\operatorname{cfa}()$ and sem() are the same in Lavaan

Output-1

Estimator ML
Optimization method NLMINB
Number of free parameters 21
Number of observations 301
Model Test User Model:
Test statistic85.306
Degrees of freedom 24
P-value (Chi-square) 0.000
Parameter Estimates:
InformationExpected
Information saturated (h1) modelStandard errors

Output-2

Goodness-of-Fit Index Summary

```
User Model versus Baseline Model:
    Comparative Fit Index (CFI) 0.931
    Tucker-Lewis Index (TLI) 0.896
Loglikelihood and Information Criteria:
    Loglikelihood user model (H0) -3737.745
    Loglikelihood unrestricted model (H1) -3695.092
    Akaike (AIC)
    7517.490
    Bayesian (BIC) 7595.339
    Sample-size adjusted Bayesian (BIC) 7528.739
Root Mean Square Error of Approximation:
    RMSEA 0.092
    90 Percent confidence interval - lower 0.071
    90 Percent confidence interval - upper 0.114
    P-value RMSEA <= 0.05
    0.001
Standardized Root Mean Square Residual:
SRMR
    0.065
```


Standardized Values

$$
N \sim(0,1)
$$

Standardized Values

Distribution

$$
N \sim(0,1)
$$

Standardized Values

Distribution

$$
N \sim(0,1)
$$

Standardized parameter estimates

	Estimate	Std.Err	z-value	$P(>\|z\|)$	Std. 1v	Std. a 11
$\times 1$	1.000				0.900	0.772
$\times 2$	0.554	0.100	5.554	0.000	0.498	0.424
$\times 3$	0.729	0.109	6.685	0.000	0.656	0.581
textual $=$						
$\times 4$	1.000				0.990	0.852
$\times 5$	1.113	0.065	17.014	0.000	1.102	0.855
$\times 6$	0.926	0.055	16.703	0.000	0.917	0.838
speed =~						
$\times 7$	1.000				0.619	0.570
$\times 8$	1.180	0.165	7.152	0.000	0.731	0.723
$\times 9$	1.082	0.151	7.155	0.000	0.670	0.665
Covariances:	Estimate	Std.Err	z-value	$P(>\|z\|)$	5td. 1 v	Std. a 11
visual m textual	0.408	0.074	5.552	0.000	0.459	0.459
speed	0.262	0.056	4.660	0.000	0.471	0.471
$\begin{gathered} \text { textual } \\ \text { speed } \end{gathered}$	0.173	0.049	3.518	0.000	0.283	0.283
Variances:						
	Estimate	Std.Err	z-value	$P(>\|z\|)$	5td. 1 v	Std. a 11
. $\times 1$	0.549	0.114	4.833	0.000	0.549	0.404
. $\times 2$	1.134	0.102	11.146	0.000	1.134	0.821
. $\times 3$	0.844	0.091	9.317	0.000	0.844	0.662
. $\times 4$	0.371	0.048	7.779	0.000	0.371	0.275
. $\times 5$	0.446	0.058	7.642	0.000	0.446	0.269
. $\times 6$	0.356	0.043	8.277	0.000	0.356	0.298
- $\times 7$	0.799	0.081	9.823	0.000	0.799	0.676
. $\times 8$	0.488	0.074	6.573	0.000	0.488	0.477
. $\times 9$	0.566	0.071	8.003	0.000	0.566	0.558
visual	0.809	0.145	5.564	0.000	1.000	1.000
textual	0.979	0.112	8.737	0.000	1.000	1.000
speed	0.384	0.086	4.451	0.000	1.000	1.000

StandardizedSolution(fit)

	lhs op	rhs	est.std	se	z	pvalue	ci. lower	ci.upper
1	visual	x1	0.772	0.055	14.041	0	0.664	0.880
2	visual	$\times 2$	0.424	0.060	7.105	0	0.307	0.540
3	visual	x3	0.581	0.055	10.539	0	0.473	0.689
4	textual	$\times 4$	0.852	0.023	37.776	0	0.807	0.896
5	textual =	$\times 5$	0.855	0.022	38.273	0	0.811	0.899
6	textual	$\times 6$	0.838	0.023	35.881	0	0.792	0.884
7	speed =	$\times 7$	0.570	0.053	10.714	0	0.465	0.674
8	speed =~	$\times 8$	0.723	0.051	14.309	0	0.624	0.822
9	speed =~	x9	0.665	0.051	13.015	0	0.565	0.765
10	x1	x 1	0.404	0.085	4.763	0	0.238	0.571
11	$\times 2$	x2	0.821	0.051	16.246	0	0.722	0.920
12	$\times 3$	x3	0.662	0.064	10.334	0	0.537	0.788
13	$\times 4$	x4	0.275	0.038	7.157	0	0.200	0.350
14	$\times 5$ ~	$\times 5$	0.269	0.038	7.037	0	0.194	0.344
15	$\times 6$	x6	0.298	0.039	7.606	0	0.221	0.374
16	$\times 7$	$\times 7$	0.676	0.061	11.160	0	0.557	0.794
17	$\times 8$	$\times 8$	0.477	0.073	6.531	0	0.334	0.620
18	x9	x9	0.558	0.068	8.208	0	0.425	0.691
19	visual ~	visual	1.000	0.000	NA	NA	1.000	1.000
20	textual ~~	textual	1.000	0.000	NA	NA	1.000	1.000
21	speed ~~	speed	1.000	0.000	NA	NA	1.000	1.000
22	visual ~~	textual	0.459	0.064	7.189	0	0.334	0.584
23	visual ~~	speed	0.471	0.073	6.461	0	0.328	0.613
	textual ~~	speed	0.283	0.069	4.117	0	0.148	0.418

A Basic Logic of Covariance Structure Estimation

Σ is a model implied covariance matrix
\mathbf{S} is a sample covariance matrix
SEM test statistic tests the degree to the sample covariance matrix \mathbf{S} is reproduced by the estimated model covariance matrix $\hat{\Sigma}$, by setting Но : $\Sigma=\Sigma(\hat{\theta})$

Estimators

- Maximumum Likelihood Estimator

$$
F_{M L}=\log |\Sigma(\theta)|-\log \left|S_{N}\right|+\operatorname{tr}\left(S_{N} \Sigma(\theta)^{-1}\right)-p
$$

- Reweighted Least Squares (Browne, 1985)

$$
R L S=\operatorname{tr}\left[(\mathbf{S}-\Sigma(\theta)) \hat{\Sigma}_{M L}^{-1}\right]^{2}
$$

- Regularized GLS (Arruda and Bentler, 2017)

$$
R G L S=\operatorname{tr}\left[(\mathbf{S}-\Sigma(\theta)) \hat{\Sigma}_{R E G}^{-1}\right]^{2}
$$

ML Estimator-the default estimator in levaan

$$
\begin{gathered}
F_{M L}=\log |\Sigma(\theta)|-\log \left|S_{N}\right|+\operatorname{tr}\left(S_{N} \Sigma(\theta)^{-1}\right)-p \\
\hat{\theta}_{M L}=\operatorname{argmin} F_{M L}(\theta)
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
\Sigma\left(\hat{\theta}_{M L}\right)=\hat{\Lambda} \hat{\Phi} \hat{\Lambda}^{\prime}+\hat{\Psi} \\
\hat{\Sigma}_{M L}=\Sigma\left(\hat{\theta}_{M L}\right)
\end{gathered}
$$

Other Estimator Options

- "GLS": generalized least squares. For complete data only.
- "WLS": weighted least squares (sometimes called ADF estimation). For complete data only.
- "DWLS": diagonally weighted least squares
- "ULS": unweighted least squares

Other Estimators (R code)

```
library(lavaan)
data(HolzingerSwineford1939)
HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9'
fit_ML <- cfa(HS.model, data=HolzingerSwineford1939, estimator = "ML")
fit_GLS <- cfa(HS.model, data=HolzingerSwineford1939, estimator = "GLS")
fit_WLS <- cfa(HS.model, data=HolzingerSwineford1939, estimator = "WLS")
fit_ULS <- cfa(HS.model, data=HolzingerSwineford1939, estimator = "ULS")
summary(fit_ML)
summary(fit_GLS)
summary(fit_WLS)
summary(fit_ULS)
```


Fixing covariances between latent factors (Diagram)

Fixing all covariances between latent variables

UCLA

Fixing covariances between latent factors (Output)

Fixing covariances between latent factors (R code)

fit.HS.ortho <- cfa(HS.model, data =
HolzingerSwineford1939,orthogonal = TRUE)

Fix all variances of latent variables

fit.HS.ortho <- cfa(HS.model,data $=$ HolzingerSwineford1939, std.lv
= TRUE)

Fix variances of latent variables

Fixing selected parameters

UCLA

Fixing selected parameters

UCLA

Fixing selected parameters (R code)

```
model2<- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ NA*x7 + x8 + x9
# orthogonal factors
visual ~~ 0*speed
textual ~~ 0*speed
# fix variance of speed factor
speed ~~ 1*speed'
fit2 <- cfa(model2, data=HolzingerSwineford1939)
summary(fit2)
```


Fixing selected parameters (R code)

Latent Variables:				
	Estimate	Std.Err	z-value	$P(>\|z\|)$
visual =~				
$\times 1$	1.000			
$\times 2$	0.559	0.105	5.300	0.000
$\times 3$	0.708	0.118	6.004	0.000
textual $=\sim$				
$\times 4$	1.000			
$\times 5$	1.111	0.065	16.996	0.000
$\times 6$	0.925	0.055	16.703	0.000
speed $=\sim$				
x7	0.661	0.073	9.040	0.000
$\times 8$	0.810	0.074	10.899	0.000
$\times 9$	0.565	0.066	8.509	0.000
Covariances:				
	Estimate	Std.Err	z-value	$P(>\|z\|)$
```visual ~~ speed textual ~~ speed```	$\begin{aligned} & 0.000 \\ & 0.000 \\ & \hline \end{aligned}$			
visual ~~ textual	0.414	0.074	5.562	0.000
Variances:				
	Estimate	Std.Err	$z$-value	$P(>\|z\|)$
speed	1.000			
. $\times 1$	0.536	0.129	4.155	0.000
. $\times 2$	1.125	0.103	10.965	0.000
. $\times 3$	0.863	0.095	9.085	0.000
. $\times 4$	0.369	0.048	7.735	0.000
. $\times 5$	0.449	0.059	7.662	0.000
. $\times 6$	0.356	0.043	8.263	0.000
. $\times 7$	0.746	0.086	8.650	0.000
. $\times 8$	0.366	0.097	3.794	0.000
. $\times 9$	0.696	0.072	9.640	0.000
visual	0.822	0.158	5.188	0.000
textual	0.981	0.112	8.745	0.000

## Means Structure Model (path diagram)



UCLA

## Means Structure Model (R code)

```
means_model<-'visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
x1 ~ 1
x2 ~ 1
x3 ~ 1
x4 ~ 1
x5 ~ 1
x6 ~ 1
x7 ~ 1
x8 ~ 1
x9 ~ 1
'
fit_means <- cfa(means_model,data = HolzingerSwineford1939)
summary(fit_means)
```


## Means Structure Model (output)

Note that we cannot estimate both the intercepts of LV and indicators at the same time

Covariances:				
	Estimate	Std.Err	$z$-value	$P(>\|z\|)$
visual ~~				
textual	0.408	0.074	5.552	0.000
speed	0.262	0.056	4.660	0.000
textual ~				
speed	0.173	0.049	3.518	0.000
Intercepts:				
	Estimate	Std.Err	z-value	$P(>\|z\|)$
. $\times 1$	4.936	0.067	73.473	0.000
. x 2	6.088	0.068	89.855	0.000
. $\times 3$	2.250	0.065	34.579	0.000
. $\times 4$	3.061	0.067	45.694	0.000
. $\times 5$	4.341	0.074	58.452	0.000
. $\times 6$	2.186	0.063	34.667	0.000
. $\times 7$	4.186	0.063	66.766	0.000
. $\times 8$	5.527	0.058	94.854	0.000
.x9	5.374	0.058	92.546	0.000
visual textual speed	0.000	By default, Levaan		
	0.000			
	0.000	sets latent variable		
		intercepts to be		
Variances:			zero	
	Estimate	Std.Err	z-value	$P(>\|z\|)$
. $\times 1$	0.549	0.114	4.833	0.000
. $\times 2$	1.134	0.102	11.146	0.000
. $\times 3$	0.844	0.091	9.317	0.000
. $\times 4$	0.371	0.048	7.779	0.000
. $\times 5$	0.446	0.058	7.642	0.000
. $\times 6$	0.356	0.043	8.277	0.000
. $\times 7$	0.799	0.081	9.823	0.000
. $\times 8$	0.488	0.074	6.573	0.000
. $\times 9$	0.566	0.071	8.003	0.000
visual	0.809	0.145	5.564	0.000
textual	0.979	0.112	8.737	0.000
speed	0.384	0.086	4.451	0.000

## Extracting sample covariance matrix

```
> fitted(fit_means)
$cov
 x1 x2 x3 x4 x5 x6 x7 x8 x9
x1 1.358
x2 0.448 1.382
x3 0.590 0.327 1.275
x4 0.408 0.226 0.298 1.351
x5 0.454 0.252 0.331 1.090 1.660
x6 0.378 0.209 0.276 0.907 1.010 1.196
x7 0.262 0.145 0.191 0.173 0.193 0.161 1.183
x8 0.309 0.171 0.226 0.205 0.228 0.190 0.453 1.022
x9 0.284 0.157 0.207 0.188 0.209 0.174 0.415 0.490 1.015
```

\$mean
x1 x2 x3 x4 x5 x6 x7 x8 x9
4.9366 .0882 .2503 .0614 .3412 .1864 .1865 .5275 .374

## Means structure with fixed intercept values ( R code)

EX. We want the means of $x 1, x 2, x 3, x 4=0.5$

```
means_model<-'visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
intecept with fixed lues
x1 + x2 + x3 + x4 ~ 0.5*1'
fit_meansfixed <- cfa(means_model,data = HolzingerSwineford1939) summary(fit_meansfixed)
```


## Means structure with fixed intercept values

Intercepts:
.$x 1$
.$x 2$
.$x 3$
.$\times 4$
.$\times 5$
.$x 6$
.$x 7$
.$\times 8$
.$x 9$
visual
textual
speed

Estimate	Std.Err	z-value	$P(>\|z\|)$
0.500			
0.500			
0.500			
0.500			
1.625	0.050	32.530	0.000
-0.083	0.043	-1.932	0.053
3.083	0.061	50.440	0.000
4.222	0.056	75.567	0.000
4.216	0.056	75.038	0.000
0.000			
0.000			
0.000			

Variances:

	Estimate	Std.Err	z-value	$P(>\|z\|)$
.x1	0.442	0.105	4.214	0.000
.x2	1.757	0.208	8.439	0.000
.x3	0.964	0.083	11.677	0.000
.x4	0.355	0.045	7.915	0.000
.x5	0.463	0.055	8.479	0.000
.x6	0.361	0.041	8.891	0.000
.x7	0.791	0.076	10.380	0.000
.x8	0.473	0.061	7.730	0.000
.x9	0.582	0.062	9.389	0.000
visual	20.593	1.717	11.993	0.000
textual	7.554	0.645	11.713	0.000
speed	1.610	0.189	8.510	0.000

## Latent variables intercepts

```
means_model<-'visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
intecept with fixed lues
x1 + x2 + x3 + x4 + x5 +x6 +x7 +x8 +x9 ~ 0*1
visual+textual+speed~1
'
fit_meanslv <- cfa(means_model,data = HolzingerSwineford1939)
summary(fit_meanslv)
```


## Latent variables intercepts

Intercepts:

	Estimate	Std.Err	z-value	$P(>\|z\|)$
. $\times 1$	0.000			
.x2	0.000			
.x3	0.000			
. $\times 4$	0.000			
. $\times 5$	0.000			
. $\times 6$	0.000			
. x 7	0.000			
. $\times 8$	0.000			
. x 9	0.000			
visual	4.945	0.065	76.241	0.000
textual	3.075	0.064	47.778	0.000
speed	4.191	0.061	68.343	0.000
Variances:				
	Estimate	Std.Err	z-value	$P(>\|z\|)$
. $\times 1$	0.830	0.087	9.496	0.000
. $\times 2$	0.949	0.113	8.422	0.000
.x3	1.044	0.088	11.845	0.000
. $\times 4$	0.465	0.050	9.364	0.000
. x 5	0.263	0.063	4.144	0.000
. $\times 6$	0.516	0.047	11.065	0.000
. $\times 7$	0.837	0.076	10.967	0.000
. $\times 8$	0.503	0.060	8.328	0.000
. $\times 9$	0.539	0.061	8.818	0.000
visual	0.439	0.068	6.427	0.000
textual	0.800	0.076	10.523	0.000
speed	0.302	0.037	8.192	0.000

## Latent variables intercepts

Intercepts:
.$x 1$
.$x 2$
.$x 3$
.$x 4$
.$\times 5$
.$x 6$
.$x 7$
.$\times 8$
.$x 9$
visual
textual
speed

Estimate	Std.Err	$z$-value	$P(>\|z\|)$
0.000			
0.000	We have to hold these		
0.000	intercepts to zero to estimate		
0.000	LV intercepts		
0.000			
0.000			
0.000			
0.000			
0.000			
4.945	0.065	76.241	0.000
3.075	0.064	47.778	0.000
4.191	0.061	68.343	0.000

Variances:
.x1
.$x 2$
.x3
.x4
.x5
.x6
.x7
.$\times 8$
.x9
visual
textual
speed

Estimate	Std.Err	z-value	$P(>\|z\|)$
0.830	0.087	9.496	0.000
0.949	0.113	8.422	0.000
1.044	0.088	11.845	0.000
0.465	0.050	9.364	0.000
0.263	0.063	4.144	0.000
0.516	0.047	11.065	0.000
0.837	0.076	10.967	0.000
0.503	0.060	8.328	0.000
0.539	0.061	8.818	0.000
0.439	0.068	6.427	0.000
0.800	0.076	10.523	0.000
0.302	0.037	8.192	0.000

## ML Robust Standard Errors Scaled Test statistics

- "MLM": maximum likelihood estimation with robust standard errors and a Satorra-Bentler scaled test statistic. For complete data only.
- "MLMVS": maximum likelihood estimation with robust standard errors and a mean- and variance adjusted test statistic (aka the Satterthwaite approach). For complete data only.
- "MLMV": maximum likelihood estimation with robust standard errors and a mean- and variance adjusted test statistic (using a scale-shifted approach). For complete data only.
- "MLF": for maximum likelihood estimation with standard errors based on the first-order derivatives, and a conventional test statistic. For both complete and incomplete data.
- "MLR": maximum likelihood estimation with robust (Huber-White) standard errors and a scaled test statistic that is (asymptotically) equal to the Yuan-Bentler test statistic. For both complete and incomplete data.


## ML Robust Standard Errors Scaled Test statistics (R code)

```
library(lavaan)
data(HolzingerSwineford1939)
HS.model <- 'visual =~ x1 + x2 + x3
 textual =~ x4 + x5 + x6
 speed =~ x7 + x8 + x9'
fit_MLM <- cfa(HS.model, data=HolzingerSwineford1939, estimator = "MLM")
fit_MLMVS <- cfa(HS.model, data=HolzingerSwineford1939, estimator = "MLMVS")
fit_MLMVS <- cfa(HS.model, data=HolzingerSwineford1939, estimator = "MLMVS")
fit_MLMV <- cfa(HS.model, data=HolzingerSwineford1939, estimator = "MLMV")
fit_MLF <- cfa(HS.model, data=HolzingerSwineford1939, estimator = "MLF")
fit_MLR <- cfa(HS.model, data=HolzingerSwineford1939, estimator = "MLR")
```


## Missing values and standard errors

When we have missing values in data, we can use missing="ML" command to fix them.
In this case, expected information will be used to calculate standard errors. However, we can choose to calculate standard errors based on observed information (Hessian information) fitl <- cfa(HS.model, data=HolzingerSwineford1939, information="observed", estimator = "ML", se="robust.sem") fit2 <- cfa(HS.model, data=HolzingerSwineford1939, information="expected", estimator = "ML", se="robust.sem")

## Test Statistic Options

- "standard", a conventional chi-square test is computed
- "Satorra.Bentler", a Satorra-Bentler scaled test statistic is computed
- "Yuan.Bentler", a Yuan-Bentler scaled test statis-tic is computed.
- "Yuan.Bentler.Mplus", a test statistic is computed that is asymptotically equal to the Yuan-Bentler scaled test statistic


## Test Statistic Options (R code)

```
fit_1 <- cfa(HS.mode1, data=HolzingerSwineford1939, test="standard")
fit_2 <- cfa(HS.mode1, data=HolzingerSwineford1939, test="Satorra.Bentler")
fit_3 <- cfa(HS.mode1, data=HolzingerSwineford1939, test="Yuan.Bentler")
fit_4 <- cfa(HS.mode1, data=HolzingerSwineford1939, test="Yuan.Bentler.Mplus")
```


## Test Statistic Options-an example

Optimization method	NLMINB	
Number of free parameters	21	
Number of observations	301	
Estimator	ML	Robust
Mode1 Fit Test Statistic	85.306	92.281
Degrees of freedom	24	24
P-value (Chi-square)	0.000	0.000
Scaling correction factor		
for the Satorra-Bentler correction		0.924
Parameter Estimates:		
Information		
Observed information based on	Observed   Hessian   Standard Errors	

## References

All these information in this presentation come from:
http://lavaan.ugent.be/tutorial/tutorial.pdf
https://cran.r-project.org/web/packages/lavaan/lavaan.pdf
Structural Equational with Latent Variables (1989) by Kenneth Bollen EQS Manual by Peter Bentler

# Thank You 



