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Research Question

Does Reweighted Least Squares method (RLS) perform better in
small samples than maximum likelihood (ML) method for mean and
covariance structure?
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Introduction

Normal-theory methods (e.g. ML) in SEM rely on the
assumption of asymptotic behavior of statistics N→∞
When N is large enough, the model follows a χ2 distribution
Real-world applications of SEM often have small or modest
sample sizes
When P > N, the sample covariance matrix is not invertible
When the ratio of p

N is slightly less than 1, even though the
sample covariance structure is invertible, but it’s numerically ill
conditioned.

3 / 22



10-dimensional Multivariate-normal Simulation Illustration
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Existing Methods in the Literature

Reweighted Least Squares (Browne, 1985)

RLS∗ = tr[(S− Σ(θ))Σ̂−1
ML ]2

Regularized GLS (Arruda and Bentler, 2017)

RGLS∗ = tr[(S− Σ(θ))Σ̂−1
REG]2

A puzzle here: Does Reweighted Least Squares also work in
mean and covariance structure?
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A Covariance & Mean Structure Model

T = F︸︷︷︸
Covariance

+ (X̄ − µ)
′
Σ̂−1(X̄ − µ)︸ ︷︷ ︸

Mean Structure

T function reflects how closely the sample covariance matrix S is
reproduced by the estimated model covariance matrix Σ̂, as well as
how closely the sample mean vector X̄ is reproduced by the estimated
model mean vector µ. Therefoe, a model may fit badly if the means
are modeled poorly, or if the covariances are modeled poorly, or both.
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How to derive structured means?

X = µx + Λξ + ε

Taking expectation E(ξ) = µξ, E(ε) = 0, and assume µx = 0, then

X̄ = Λµξ

We can re-construct the population means as

µ̂ = Λµξ
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We can simplify the notation in this way

T = F︸︷︷︸
Covariance

+ (X̄ − µ)
′
Σ̂−1(X̄ − µ)︸ ︷︷ ︸

Mean Structure

↓

T = F + (X̄ − Λµξ)
′
Σ̂−1(X̄ − Λµξ)
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Reweighted Least Squares

FGLS =
1
2

tr[{(S − Σ(θ))V−1}]2

V−1 is a biased weight matrix
Replace V−1 with Σ̂−1

ML that derives from ML
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Why is TRLS unbiased?

TML = TRLS + n
∞∑

k=3

1
k

tr
{

Ip − SΣ̂−1
}k

When n > > p, the second term will become 0
When p > n, the second term will be positive
→ TML will be too large, and TRLS will be about right
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How do we derive Σ̂ML?

FML = log|Σ(θ)| − log|SN|+ tr(SNΣ(θ)−1)− p

θ̂ML = argmin FML(θ)

Therefore,
Σ(θ̂ML) = Λ̂Φ̂Λ̂

′
+ Ψ̂

Σ̂ML = Σ(θ̂ML)
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How do we derive RLS?

Once we derive Σ̂ML, we can fit it into the TRLS function, and obtain
the test-statistics.

FGLS =
1
2

tr[{(S − Σ(θ))V−1}]2

↓

TRLS =
1
2

tr[(S − Σ̂(θ))Σ̂−1
ML ]2
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RLS for Mean and Covariance Structure

T = TRLS + (X̄ − Λµξ)
′
Σ̂−1

ML(X̄ − Λµξ)
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Population Model Path-Diagram
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For Covariance Structure

5 indicators per factor
3 latent factors
120 data points
33 free parameters
87 df
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For Covariance and Mean Structure

5 indicators per factor
3 latent factors
135 data points
36 free parameters
99 df
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Test Statistics
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Test Statistics
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Test Statistics
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Empirical Rejection Frequency
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Empirical Rejection Frequency
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Empirical Rejection Frequency
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Empirical Rejection Frequency
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Empirical Rejection Frequency
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Empirical Rejection Frequency
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Conclusion

Based test statistics and empirical rejection frequency, this study
finds that both TML and TRLS work fine when samples are large.
When sample sizes are less than 500, the estimates of TML
become increasingly inaccurate.
Reweighted least squares produces consistent parameter
estimates across all sample sizes.
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Thank You
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